Calcium, ischemia and excitotoxicity.

نویسندگان

  • Kinga Szydlowska
  • Michael Tymianski
چکیده

The initial reports regarding a cytotoxic role of calcium ions were published over 30 years ago. In neurons, calcium ions can gain entry into the cell through several mechanisms. These include the over-activation of glutamate receptors (NMDA, AMPA, KA) or of a range of channels and transporters (TRPM2, TRPM7, NCX, ASICs, CaV1.2, and hemichannels). Potentially toxic cytoplasmic calcium concentrations can also occur due to release from internal stores, either through physical damage to mitochondria and the endoplasmic reticulum, or a malfunction of receptors and channels present in their membranes. Such increases of cytoplasmic calcium concentrations can trigger a range of downstream neurotoxic cascades, including the uncoupling mitochondrial electron transfer from ATP synthesis, and the activation and overstimulation of enzymes such as calpains and other proteases, protein kinases, nitric oxide synthase (NOS), calcineurin and endonucleases. Despite the toxic role of calcium, drugs designed to block its entry into neurons have all failed to have any beneficial effects in clinical trials. We suggest that blocking certain receptors and ion channels is unlikely to be a useful therapeutic strategy due to potential deleterious side effects. However, identifying those that are most responsible for cell death and their downstream signalling pathways may lead to improved strategies for treating ischemic and excitotoxic disorders.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Glutamate excitotoxicity in transient global cerebral ischemia.

The glutamate excitotoxicity hypothesis of ischemic cell damage holds that cell damage caused by transient cerebral ischemia is triggered by glutamate, released during ischemia from the intracellular compartment into the synaptic cleft: high extracellular glutamate levels activate ionotropic glutamate receptors, thus inducing an overflow of calcium ions into the neurones and a calcium-induced a...

متن کامل

αCaMKII is differentially regulated in brain regions that exhibit differing sensitivities to ischemia and excitotoxicity.

Different brain regions exhibit differing sensitivities to ischemia/excitotoxicity. Whether these differences are due to perfusion or intrinsic factors has not been established. Herein, we found no apparent association between sensitivity to ischemia/excitotoxicity and the level of expression or basal phosphorylation of calcium/calmodulin-stimulated protein kinase II (αCaMKII) or glutamate rece...

متن کامل

Excitotoxicity and stroke: Identifying novel targets for neuroprotection

Excitotoxicity, the specific type of neurotoxicity mediated by glutamate, may be the missing link between ischemia and neuronal death, and intervening the mechanistic steps that lead to excitotoxicity can prevent stroke damage. Interest in excitotoxicity began fifty years ago when monosodium glutamate was found to be neurotoxic. Evidence soon demonstrated that glutamate is not only the primary ...

متن کامل

Ca2+ and acidosis synergistically lead to the dysfunction of cortical GABAergic neurons during ischemia.

Cell death in cerebral ischemia is presumably initiated by neural excitotoxicity resulted from the dysfunction of inhibitory neurons in early stage. Molecular processes underlying the ischemic injury of inhibitory neurons remain to be elusive, which we investigated by biochemical manipulations with cellular imaging and patch clamp at GFP-labeled GABAergic cells in cortical slices. Ischemia indu...

متن کامل

Neuroprotection by two polyphenols following excitotoxicity and experimental ischemia.

Brain ischemia induces neuronal loss which is caused in part by excitotoxicity and free radical formation. Here, we report that mangiferin and morin, two antioxidant polyphenols, are neuroprotective in both in vitro and in vivo models of ischemia. Cell death caused by glutamate in neuronal cultures was decreased in the presence of submicromolar concentrations of mangiferin or morin which in tur...

متن کامل

Neuroprotection, excitotoxicity and NMDA antagonists.

PURPOSE To analyze the main aspects of neuroprotection and excitotoxicity. DISCUSSION This is a significant theory on the pathophysiology of cerebral ischemia; it is based on the release of excitatory aminoacid (EAA), mainly glutamate. The sequence starts with a decrease of the blood flow and ends in neuronal death. The main stages of this reaction are herein presented and discussed. An in de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell calcium

دوره 47 2  شماره 

صفحات  -

تاریخ انتشار 2010